The distinguishing chromatic number of Cartesian products of two complete graphs

نویسندگان

  • Janja Jerebic
  • Sandi Klavzar
چکیده

A labeling of a graph G is distinguishing if it is only preserved by the trivial automorphism of G. The distinguishing chromatic number of G is the smallest integer k such that G has a distinguishing labeling that is at the same time a proper vertex coloring. The distinguishing chromatic number of the Cartesian product Kk Kn is determined for all k and n. In most of the cases it is equal to the chromatic number, thus answering a question of Choi, Hartke and Kaul whether there are some other graphs for which this equality holds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinguishing Chromatic Number of Cartesian Products of Graphs

The distinguishing chromatic number χD (G) of a graph G is the least integer k such that there is a proper k-coloring of G which is not preserved by any nontrivial automorphism of G. We study the distinguishing chromatic number of Cartesian products of graphs by focusing on how much it can exceed the trivial lower bound of the chromatic number χ(·). Our main result is that for every graph G, th...

متن کامل

The distinguishing chromatic number of bipartite graphs of girth at least six

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling   with $d$ labels  that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...

متن کامل

Equitable Colorings of Cartesian Product Graphs of Wheels with Complete Bipartite Graphs

By the sorting method of vertices, the equitable chromatic number and the equitable chromatic threshold of the Cartesian products of wheels with bipartite graphs are obtained. Key–Words: Cartesian product, Equitable coloring, Equitable chromatic number, Equitable chromatic threshold

متن کامل

Sharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs

In $1994,$ degree distance  of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of  multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the  multiplicative version of degree distance and multiplicative ver...

متن کامل

Different-Distance Sets in a Graph

A set of vertices $S$ in a connected graph $G$ is a different-distance set if, for any vertex $w$ outside $S$, no two vertices in $S$ have the same distance to $w$.The lower and upper different-distance number of a graph are the order of a smallest, respectively largest, maximal different-distance set.We prove that a different-distance set induces either a special type of path or an independent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 310  شماره 

صفحات  -

تاریخ انتشار 2010